Caveolae and cancer: A new mechanical perspective.

نویسندگان

  • Christophe Lamaze
  • Stéphanie Torrino
چکیده

Caveolae are small invaginations of the plasma membrane in cells. In addition to their classically described functions in cell signaling and membrane trafficking, it was recently shown that caveolae act also as plasma membrane sensors that respond immediately to acute mechanical stresses. Caveolin 1 (Cav1), the main component of caveolae, is a multifunctional scaffolding protein that can remodel the extracellular environment. Caveolae dysfunction, due to mutations in  caveolins, has been linked to several human diseases called "caveolinopathies," including muscular dystrophies, cardiac disease, infection, osteoporosis, and cancer. The role of caveolae and/or Cav1 remains controversial particularly in tumor progression. Cav1 function has been associated with several steps of cancerogenesis such as tumor growth, cell migration, metastasis, and angiogenesis, yet it was observed that Cav1 could affect these steps in a positive or negative manner. Here, we discuss the possible function of caveolae and Cav1 in tumor progression in the context of their recently discovered role in cell mechanics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae

The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in ...

متن کامل

Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord.

The notochord, a conserved axial structure required for embryonic axis elongation and spine development, consists of giant vacuolated cells surrounded by an epithelial sheath [1-3]. During morphogenesis, vacuolated cells maintain their structural integrity despite being under constant mechanical stress [4]. We hypothesized that the high density of caveolae present in vacuolated cells [5, 6] cou...

متن کامل

Caveolae - mechanosensitive membrane invaginations linked to actin filaments.

An essential property of the plasma membrane of mammalian cells is its plasticity, which is required for sensing and transmitting of signals, and for accommodating the tensional changes imposed by its environment or its own biomechanics. Caveolae are unique invaginated membrane nanodomains that play a major role in organizing signaling, lipid homeostasis and adaptation to membrane tension. Cave...

متن کامل

Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells

Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the ...

متن کامل

Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers

The transport function of P-glycoprotein (P-gp) requires its efficient localization to caveolae, a subset of lipid rafts, and disruption of caveolae suppresses P-gp transport function. However, the regulatory molecules involved in the translocation of P-gp into caveolae remain unknown. In the present study, we showed that c-Src dependent Caveolin-1 phosphorylation promoted the translocation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical journal

دوره 38 5  شماره 

صفحات  -

تاریخ انتشار 2015